Unruh-DeWitt (UDW) detector model
Originally proposed by Unruh [1], then simplified by DeWitt [2].
Couples a two-level system to a quantised scalar field $\hat{\phi}(\vec{x})$
\[
\hat{H}_I = \lambda \hat{\mu} \otimes \hat{\phi}(\vec{x})
\]
Polarisation or 'monopole' operator exchanges energy levels
\[
\hat{\mu} = | g \rangle \langle e | + | e \rangle \langle g |
\]
[1] W. G. Unruh, Phys. Rev. D 14 , 870 (1976).
[2] B. DeWitt, in General Relativity: An Einstein Centenary Survey (University Press, UK, 1979).
Unruh-DeWitt (UDW) detector model
Originally proposed by Unruh [1], then simplified by DeWitt [2].
Couples a two-level system to a quantised scalar field $\hat{\phi}(\vec{x})$
\[
\hat{H}_I = \lambda \hat{\mu} \otimes \hat{\phi}(\vec{x})
\]
Field can be decomposed as superposition of plane wave modes
\[
\hat{\phi}(\vec{x}) = \frac{1}{(2\pi)^{3/2}} \int \frac{d^3k}{\sqrt{2 \omega(\vec{k})}} \Big ( \hat{a}(\vec{k}) e^{-i \vec{k} \cdot \vec{x}} + \mathrm{H.c.} \Big )
\]
[1] W. G. Unruh, Phys. Rev. D 14 , 870 (1976).
[2] B. DeWitt, in General Relativity: An Einstein Centenary Survey (University Press, UK, 1979).
Detectors with quantised centre of mass
Considered by Unruh and Wald for a box detector [3]
\[
\hat{H}_I = \lambda \int d^3x \, \hat{\mu}(\vec{x}) \otimes \hat{\phi}(\vec{x})
\]
with a position-dependent monopole operator of the form
\[
\hat{\mu}(\vec{x}) \equiv \psi_g^*(\vec{x}) \psi_e(\vec{x}) | g \rangle \langle e | + \psi_e^*(\vec{x}) \psi_g(\vec{x}) | e \rangle \langle g |
\]
[3] W. G. Unruh and R. M. Wald, Phys. Rev. D 29 , 1047 (1984).
Detectors with quantised centre of mass
Alternative extension considered by Stritzelberger and Kempf [4]
\[
\hat{H}_I = \lambda \int d^3x \, \hat{\mu} \otimes | \vec{x} \rangle \langle \vec{x} |_D \otimes \hat{\phi}(\vec{x})
\]
Detector's free Hamiltonian now includes a kinetic term
\[
\hat{H}_D = \frac{\hat{\vec{p}}^2}{2 M} + E | e \rangle \langle e |
\]
Full atom-light interaction treated by Wilkens [5]
[4] N. Stritzelberger and A. Kempf, Phys. Rev. D 101 , 036007 (2020).
[5] M. Wilkens, Phys. Rev. A 47 , 671 (1993).
Relativistic centre of mass?
Problem: both extensions assume a non-relativistic detector!
Model mixes Lorentz and Galilean groups
Leads to "spurious friction forces" acting on detector [5]
Relativistic centre of mass?
Problem: both extensions assume a non-relativistic detector!
Can introduce relativistic centre of mass in two different ways:
Second-quantised model—relativistic quantum field theory
First-quantised model—relativistic quantum mechanics
Let's consider both models, starting with second-quantised case
Relativistic second-quantised detector
Relativistic second-quantised detector model proposed by Unruh [1]
Replace energy levels of detector by fields $| j \rangle \to \hat{\psi}_j$
\[
\hat{\mu}_\hat{\psi}(\vec{x}) = \hat{\psi}^\dagger_g(\vec{x}) \hat{\psi}_e(\vec{x}) + \hat{\psi}^\dagger_e(\vec{x}) \hat{\psi}_g(\vec{x})
\]
The interaction Hamiltonian takes the form
\[
\hat{H}_I^{(\mathrm{2nd})} = \lambda^{(\mathrm{2nd})} \int d^3x \, \hat{\mu}_\hat{\psi}(\vec{x}) \otimes \hat{\phi}(\vec{x})
\]
Coupling constants between models are dimensionally distinct!
Relativistic second-quantised detector
Giacomini and Kempf [6] simplified by restricting to one-particle sector
Interaction couples position and internal degrees of freedom
\[
\hat{H}_I^{(\mathrm{2nd})} \Big |_{\mathcal{H}^D_1} = \lambda^{(\mathrm{2nd})} \int d^3x \, \Big( | \vec{x}_g \rangle \langle \vec{x}_e |_D^{(\mathrm{2nd})} + | \vec{x}_e \rangle \langle \vec{x}_g |_D^{(\mathrm{2nd})} \Big) \otimes \hat{\phi}(\vec{x})
\]
Looks similar to previous non-relativistic model, except that
\[
| \vec{x}_j \rangle_D^{(\mathrm{2nd})} \equiv \frac{1}{(2\pi)^{3/2}} \int \frac{d^3p}{\sqrt{2 E_j(\vec{p})}} e^{-i \vec{p} \cdot \vec{x}} | \vec{p}, j \rangle_D
\]
Position states are not Fourier transforms of momentum eigenstates!
[6] F. Giacomini and A. Kempf, Phys. Rev. D 105 , 125001 (2022).
A relativistic first-quantised model?
Quantise the detector in a boosted frame with momentum $\vec{p}$
\[
\hat{H}_D = \sqrt{\hat{\vec{p}}^2 + \hat{M}^2} \, .
\]
To describe internal energy, we must quantise the mass-energy
\[
\hat{M} = M_g | g \rangle \langle g | + M_e | e \rangle \langle e | \, ,
\]
where
\[
\hat{M} | j \rangle = M_j | j \rangle \, .
\]
A relativistic first-quantised model?
Interaction Hamiltonian should have the form
\[
\hat{H}_I^{(\mathrm{1st})} = \lambda^{(\mathrm{1st})} \int d^3x \, \hat{\mu} \otimes | \vec{x} \rangle \langle \vec{x} |_D^{(\mathrm{1st})} \otimes \hat{\phi}(\vec{x}) \, .
\]
This Hamiltonian coincides with the non-relativistic expression
A relativistic first-quantised model?
Interaction Hamiltonian should have the form
\[
\hat{H}_I^{(\mathrm{1st})} = \lambda^{(\mathrm{1st})} \int d^3x \, \hat{\mu} \otimes | \vec{x} \rangle \langle \vec{x} |_D^{(\mathrm{1st})} \otimes \hat{\phi}(\vec{x}) \, .
\]
But we have to be a little careful!
Q. What time parameter does the Hamiltonian generate time translations for? [8]
A. Inertial detector. Generate time translations wrt coordinate time $t$
[8] E. Martín-Martínez and P. Rodriguez-Lopez, Phys. Rev. D 97 , 105026 (2018).
A relativistic first-quantised model?
Interaction Hamiltonian should have the form
\[
\hat{H}_I^{(\mathrm{1st})} = \lambda^{(\mathrm{1st})} \int d^3x \, \hat{\mu} \otimes | \vec{x} \rangle \langle \vec{x} |_D^{(\mathrm{1st})} \otimes \hat{\phi}(\vec{x}) \, .
\]
But we have to be a little careful!
Q. How do we define the position states $| \vec{x} \rangle_D^{(\mathrm{1st})}$?
A. Take states to be Fourier transform of momentum eigenstates
\[
| \vec{x} \rangle_D^{(\mathrm{1st})} \equiv \frac{1}{(2\pi)^{3/2}} \int d^3p \, e^{-i \vec{p} \cdot \vec{x}} | \vec{p} \rangle_D \, .
\]
A relativistic first-quantised model?
Interaction Hamiltonian should have the form
\[
\hat{H}_I^{(\mathrm{1st})} = \lambda^{(\mathrm{1st})} \int d^3x \, \hat{\mu} \otimes | \vec{x} \rangle \langle \vec{x} |_D^{(\mathrm{1st})} \otimes \hat{\phi}(\vec{x}) \, .
\]
But we have to be a little careful!
Q. How are the coupling constants between models related?
A. Take couplings to coincide for detector at rest
\[
\lambda^{\mathrm{(2nd)}} = \sqrt{2 (M_g^2 + M_e^2)} \, \lambda^{\mathrm{(1st)}} \, .
\]
Summary
First-quantised model
\[
\hat{H}_I^{(\mathrm{1st})} = \lambda^{(\mathrm{1st})} \int d^3x \, \Big( | \vec{x}_g \rangle \langle \vec{x}_e |_D^{(\mathrm{1st})} + | \vec{x}_e \rangle \langle \vec{x}_g |_D^{(\mathrm{1st})} \Big) \otimes \hat{\phi}(\vec{x}) \, .
\]
Second-quantised model
\[
\hat{H}_I^{(\mathrm{2nd})} \Big |_{\mathcal{H}^D_1} = \lambda^{(\mathrm{2nd})} \int d^3x \, \Big( | \vec{x}_g \rangle \langle \vec{x}_e |_D^{(\mathrm{2nd})} + | \vec{x}_e \rangle \langle \vec{x}_g |_D^{(\mathrm{2nd})} \Big) \otimes \hat{\phi}(\vec{x}) \, .
\]
Different localisations are given by
\[
| \vec{x}_j \rangle_D^{(\mathrm{1st})} \equiv \frac{1}{(2\pi)^{3/2}} \int d^3p \, e^{-i \vec{p} \cdot \vec{x}} | \vec{p}, j \rangle_D \, , \quad
| \vec{x}_j \rangle_D^{(\mathrm{2nd})} \equiv \frac{1}{(2\pi)^{3/2}} \int \frac{d^3p}{\sqrt{2 E_j(\vec{p})}} e^{-i \vec{p} \cdot \vec{x}} | \vec{p}, j \rangle_D \, .
\]
Transition rate for spontaneous emission
We idealise the atom-light interaction, finding transition from
\[
| \Psi_i \rangle = | \psi_i, e \rangle_D \otimes | 0 \rangle \, , \text{ with } \, | \psi_i \rangle = \int{d^3p \, \psi_i(\vec{p}; \vec{p}_0) | \vec{p}} \rangle \, ,
\]
to the final state via spontaneous emission of the atom-detector
\[
| \Psi_f \rangle = | \vec{p}_f, g \rangle_D \otimes \hat{a}^\dagger(\vec{k}) | 0 \rangle \, .
\]
Interaction picture: evolution wrt free Hamiltonian $\hat{H}_D + \hat{H}_F$
Weak coupling: find to first-order in perturbation theory
\[
\hat{U}(t_f, \, t_i) = 1 - i \int_{t_i}^{t_f} dt \, \hat{H}_{I}(t) + \mathcal{O}(\lambda^2) \, .
\]
Transition rate for spontaneous emission
Transition amplitude and probability found from
\[
\mathcal{A}_{| \vec{p}_i, e, 0 \rangle \to | \vec{p}_f, g, 1_{\vec{k}} \rangle} = \langle \Psi_f | \hat{U}(t_f, \, t_i) | \Psi_i \rangle \, , \\
P_{| \vec{p}_i, e, 0 \rangle \to | g \rangle} = \int d^3k \int d^3p_f \, \left| \mathcal{A}_{| \vec{p}_i, e, 0 \rangle \to | \vec{p}_f, g, 1_{\vec{k}} \rangle} \right|^2 \, .
\]
Transition rate given as a functional of the detector wave function (probability density function), convolved with a 'template function'
\[
\dot{P}[\psi_i] = \frac{\lambda^2}{2 \pi} \int d^3p \, |\psi_i(\vec{p}; \vec{p}_0)|^2 \, \mathcal{T}_{\mathrm{rel}}(\vec{p}) \, .
\]
Transition rate for spontaneous emission
Transition rate given as a functional of the detector wave function (probability density function), convolved with a 'template function'
\[
\dot{P}[\psi_i] = \frac{\lambda^2}{2 \pi} \int d^3p \, |\psi_i(\vec{p}; \vec{p}_0)|^2 \, \mathcal{T}_{\mathrm{rel}}(\vec{p}) \, .
\]
First-quantised model
\[
\hspace{-3em} \mathcal{T}_{\mathrm{rel}}^{\mathrm{(1st)}}(\vec{p}) = \frac{1}{4} \left( 1 - \frac{M_g^4}{M_e^4} \right) \sqrt{\vec{p}^2 + M_e^2} \, ,
\]
Second-quantised model
\[
\hspace{1em} \mathcal{T}_{\mathrm{rel}}^{\mathrm{(2nd)}}(\vec{p}) = \frac{1}{4} \left( 1 - \frac{M_g^4}{M_e^4} \right) \frac{M_e^2}{\sqrt{\vec{p}^2 + M_e^2}} \, .
\]
Template functions for different localisations
where $m$ is the rest mass, i.e. $M_g \equiv m$ and $M_e \equiv m + E$.
Template functions for different localisations
where $m$ is the rest mass, i.e. $M_g \equiv m$ and $M_e \equiv m + E$.
Template functions for different localisations
where $m$ is the rest mass, i.e. $M_g \equiv m$ and $M_e \equiv m + E$.
Transition rate for detector at rest
Assume detector has Gaussian profile
\[
\psi_i(\vec{p}; \vec{p}_D) = \left( \frac{L^2}{2 \pi} \right)^{3/4} \exp\left(-\frac{L^2}{4} |\vec{p} - \vec{p}_D|^2\right) \, .
\]
Can obtain analytic results for detector at rest $\vec{p}_D = \vec{0}$
\[
\dot{P}_{\mathrm{rel.}}^{\mathrm{(1st)}}[\psi_i] \sim e^{\frac{L^2 M_e^2}{4}} K_1\left( \frac{L^2 M_e^2}{4} \right) \, , \quad
\dot{P}_{\mathrm{rel.}}^{\mathrm{(2nd)}}[\psi_i] \sim U\left( \frac{1}{2},0,\frac{L^2 M_e^2}{2} \right) \, .
\]
Transition rate for detector at rest
where $\lambda_c \equiv m^{-1}$ is the Compton wavelength of the detector.
Transition rate for detector at rest
where $\lambda_c \equiv m^{-1}$ is the Compton wavelength of the detector.
Transition rate for highly localised detector
Transition rate approximately given by template function
Q. What would one observe if this experiment were performed?